Integrating Models and Data for Robust Manipulation with and around people

HERE

Carnegie Mellon University

Siddhartha Srinivasa Boeing Endowed Professor Personal Robotics Lab Computer Science and Engineering University of Washington

Manipulation

Personal Robotics Lab

Physics-based Manipulation

DARPA ARM-S CMU 2010-13

Harness the Mechanics of Manipulation to Funnel Uncertainty

How much should the robot know?

- Object mass?
- Object-surface friction?
- Object pressure distribution?
- Finger-object friction?

No. Pick conservatively.

No.

Pick conservatively.

Analytical Capture Regions 11 ш d = 0.1mVI V IV

Addressing Object Pose Uncertainty

Dogar. "Physics-based Manipulation Planning in Cluttered Human Environments" Doctoral Dissertation, 2013.

Physics-based Manipulation Exploiting physics to manipulate objects

Dogar, Srinivasa "A Planning Framework for Non-Prehensile Manipulation under Clutter and Uncertainty", AuRo 2012.

Autonomous control of complex dynamical systems

Global models are often only partially correct

	Global, analytical models	
Model	Inaccurate	
Policy	No uncertainty	
Data	No data collection	
Training	Fast convergence	

	Global, analytical models	Locally learned models
Model	Inaccurate	Locally more accurate, captures uncertainty
Policy	No uncertainty	Uncertainty-aware
Data	No data collection	Requires data collection
Training	Fast convergence	Slow convergence

	Global, analytical models	Hybrid model	Locally learned models
Model	Inaccurate	Globally available, Locally accurate, captures uncertainty	Locally more accurate, captures uncertainty
Policy	No uncertainty	Uncertainty-aware	Uncertainty-aware
Data	No data collection	Use data to correct analytical models	Requires data collection
Training	Fast convergence	Moderate	Slow convergence

Learn the residual between simulation and reality

Gaussian Process Regression

Gilwoo Lee

	Global, analytical models	Hybrid model	Locally learned models
Model	Inaccurate	Globally available, Locally accurate, captures uncertainty	Locally more accurate, captures uncertainty
Policy	No uncertainty	Uncertainty-aware	Uncertainty-aware
Data	No data collection	Use data to correct analytical models	Requires data collection
Training	Fast convergence	Moderate	Slow convergence

Policy Search: Iterative Linear Quadratic Regulator

Linear dynamics, Quadratic cost, Iterative local improvements

19

Policy Search: Iterative Linear Quadratic Regulator

Linear dynamics, Quadratic cost, Iterative local improvements

Policy Search: Iterative Linear Quadratic Regulator

Linear dynamics, Quadratic cost, Iterative local improvements

21

Policy Search: Iterative Linear Quadratic Gaussian Control

Linear stochastic dynamics, Quadratic cost, Iterative local improvements

Todorov, Emanuel, and Weiwei Li. "A generalized iterative LQG method for locally-optimal feedback control of constrained nonlinear stochastic systems."

Incorporate model uncertainty into the Iterative Linear Quadratic Regulator

Robust Iterative Linear Quadratic Regulator

Policy Search: Iterative Linear Quadratic Gaussian Control

$$\mathbf{x}_{t+1} = \mathbf{f}(\mathbf{x}_t, \mathbf{u}_t) + \boldsymbol{\zeta}(\mathbf{x}_t, \mathbf{u}_t), \quad \boldsymbol{\zeta} \sim \mathbf{N}(0, \Gamma)$$

Bellman update:

 $V(x_t) = \min_{u_t} \frac{l(x_t, u_t) + E[V'(f(x_t, u_t))]}{Q}$

 $Q(\delta x, \delta u) = Q_x \delta x + Q_u \delta u + \frac{1}{2} (\delta x^T Q_{xx} \delta x + \delta u^T Q_{uu} \delta u + 2 \delta x^T Q x_u \delta u)$

$$Q_{x} = l_{x} + E[f_{x}^{T} V'_{x}] = l_{x} + E[(f + \zeta)_{x}^{T} V'_{x}] = l_{x} + f_{x}^{T} V'_{x}$$

$$Q_{u} = l_{u} + E[f_{u}^{T} V'_{x}]$$

$$Q_{xx} = l_{xx} + E[f_{x}^{T} V'_{xx}f_{x}] = l_{xx} + E[(f + \zeta)_{x}^{T} V'_{xx}(f + \zeta)_{x}] = l_{xx} + f_{x}^{T} V'_{xx}f_{x} + E[\zeta_{x}^{T} V'_{xx}\zeta_{x}]$$

$$Q_{uu} = l_{uu} + E[f_{u}^{T} V'_{xx}f_{u}]$$

$$Q_{ux} = l_{ux} + E[f_{u}^{T} V'_{xx}f_{x}]$$

Todorov, Emanuel, and Weiwei Li. "A generalized iterative LQG method for locally-optimal feedback control of constrained nonlinear stochastic systems."

Policy Search: Robust ILQG

 $\begin{aligned} x_{t+1} &= f(x_t, u_t) + \zeta (x_t, u_t) \\ &= f_{global}(x_t, u_t) + \mu(x_t, u_t) + \xi (x_t, u_t) + \zeta (x_t, u_t) \\ \zeta \sim N(0, \Gamma), \ \xi \sim N(0, \Sigma) \end{aligned}$

Policy Search: Robust ILQG

$$\begin{aligned} x_{t+1} &= f(x_t, u_t) + \zeta (x_t, u_t) \\ &= f_{global}(x_t, u_t) + \mu(x_t, u_t) + \xi (x_t, u_t) + \zeta (x_t, u_t) \\ \zeta \sim N(0, \Gamma), \ \xi \sim N(0, \Sigma) \end{aligned}$$

Bellman update:

$$V(x_t) = \min_{u_t} l(x_t, u_t) + E[V'(f(x_t, u_t))]$$
Q

 $Q(\delta x, \delta u) = Q_x \delta x + Q_u \delta u + + 1/2(\delta x^T Q_{xx} \delta x + \delta u^T Q_{uu} \delta u + 2 \delta x^T Q x_u \delta u)$

$$Q_{x} = l_{x} + E[f_{x}^{T} V'_{x}] = l_{x} + E[(f_{global} + \mu + \xi + \zeta)_{x}^{T} V'_{x}]$$

$$Q_{u} = l_{u} + E[f_{u}^{T} V'_{x}]$$

$$Q_{xx} = l_{xx} + E[f_{x}^{T} V'_{xx}f_{x}] = l_{xx} + E[(f_{global} + \mu + \xi + \zeta)_{x}^{T} V'_{xx}(f_{global} + \mu + \xi + \zeta)_{x}]$$

$$Q_{uu} = l_{uu} + E[f_{u}^{T} V'_{xx}f_{u}]$$

$$Q_{ux} = l_{ux} + E[f_{u}^{T} V'_{xx}f_{x}]$$

GP-ILQG

GP-ILQG: Data-driven Robust Optimal Control for Uncertain Nonlinear Dynamical Systems. Lee, Srinivasa, and Mason, 2017

Comparison

Optimal Control

Model-based RL

	Global, analytical models	Hybrid model	Locally learned models
Algorithm	ILQG	GP-ILQG	Probabilistic-DDP
	Assumes perfect model		Needs data
Initializatio n	Initialized with random policy	Initialized with ILQG policy & random trajectories	Random policy & Demonstrated trajectories

Todorov, Emanuel, and Weiwei Li. "A generalized iterative LQG method for locally-optimal feedback control of constrained nonlinear stochastic systems."

American Control Conference, 2005. Proceedings of the 2005. IEEE, 2005.

Pan, Yunpeng, and Evangelos Theodorou. "Probabilistic differential dynamic programming." Advances in Neural Information Processing Systems. 2014. 28

	Global, analytical models	GP-ILQG	Locally learned models
Model	Inaccurate	Globally available, Locally accurate, captures uncertainty	Locally more accurate, captures uncertainty
Policy	No uncertainty	Uncertainty-aware	Uncertainty-aware
Data	No data collection	Use data to correct analytical models	Requires data collection
Training	Fast convergence	Moderate	Slow convergence

Limitations

- Scaling of GPs Use any learner that reports uncertainty
- Robustness to model error discourages exploration Encourage exploration, e.g. posterior sampling

Takeaways

- Models are nice, but not perfect Bootstrap models with data
- Strive for minimalism Task-driven model learning

Integrating Models and Data for Robust Manipulation with and around people

HERE

Carnegie Mellon University

Siddhartha Srinivasa Boeing Endowed Professor Personal Robotics Lab Computer Science and Engineering University of Washington