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Harness the Mechanics of Manipulation
to Funnel Uncertainty



Quasi-Static Pushing
v/ m
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The Voting Theorem The Limit Surface
[Mason’81] [Goyal et al.’91, Howe and Cutkosky’96]

How much should the robot know?

Object mass? No.
Object-surface friction? No.

Object pressure distribution?  Pick conservatively.

Finger-object friction? Pick conservatively.
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Analytical Capture Regions




Addressing Object Pose Uncertainty

Reported Uncertainty Is included in
pose Region capture region of a G?
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Vision

Dogar. “Physics-based Manipulation Planning in Cluttered Human Environments”
Doctoral Dissertation, 2013.



Physics-based Manipulation

Exploiting physics to manipulate objects

Dogar, Srinivasa “A Planning Framework for Non-Prehensile Manipulation under Clutter and Uncertainty”, AuRo 2012.



Autonomous control of complex
dynamical systems




Global models are often
only partially correct



Optimal Control Model-based RL
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Model Inaccurate
Policy No uncertainty
Data No data collection
Training Fast convergence
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Optimal Control
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Learn the residual between
simulation and reality

Gaussian Process Regression
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Gilwoo Lee



Optimal Control

Model-based RL
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Policy Search:

lterative Linear Quadratic Regulator

Linear dynamics,
Quadratic cost,
lterative local improvements
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Policy Search:

lterative Linear Quadratic Gaussian Control

Linear stochastic dynamics,
Quadratic cost,
lterative local improvements

X2

X1

XT
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Incorporate model uncertainty into the
[terative Linear Quadratic Regulator

Robust Iterative Linear Quadratic Regulator



Policy Search:

lterative Linear Quadratic Gaussian Control

xt+1 = f(xt, ut) + C(xt, ut), C~N(O,T)

Bellman update:

V(xt) = min

Ut

I(xt, ut) + E[V’'(f(xt, ut))]

Q

Q(bX, 611) = QXE)X + Qubu ++1 /2(6XTQXX6X + 6UTQuu6u +2 6XTQXU6U)

Qx =+ E[ & V'x] = Ik + E[(f+ Ox T V5] = Ix + £x T V'x

Qu =Ilu+ E[ fu? V'«]

Qux =l + E[ & Vx| = L + E[(f+ O™ Vi(f+ O)x |= Ler + £ Vidx + E [GF Vi G|
Quu = luu + E[ fu? V'xxfu ]

Qux = lux + E[ fu? V'xxfx]
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Policy Search:
Robust ILQG

Xt+1 = f(Xt, ut) + C (Xt, Ut)
= fglobal(Xt, Ut) + |J.(Xt, ut) + & (Xt, ut) + C. (Xt, Ut)

CNN(O,F), £~N(0/Z)
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Policy Search:
Robust ILQG

xt+1 = f(xt, ur) + C (xt, ur)
= fglobal(Xt, Ut) + H(Xt, Ut) + E,, (Xt/ Ut) + C- (Xt/ Ut) C ~ N( 0; r)/ & ~ N( O/ Z‘)

Bellman update:
V(xt) = min| I(x¢, ut) + E[V’ (f(xt, ut))]

Ut Q

Q(E)X, 611) = QXéX + Quéu ++1 /2(6XTQXX6X + éuTQuuéu +2 6XTQXu6U)

Qx = I+ E[ & V'x] = Ix + E[(fglobai+ pt + £ + O)x T V'«]

Qu =l + E[ fuT V'x]

Qxx = I + E[ & V'xxfx ] = Lex + E[(fglobal+ p + £ + Ox" Vxx(fglobal+ p + & + O)x ]
Quu = luu + B[ fuT V'ufu |

Qux = Lux + B[ fuT Vx|



GP-ILQG

GP-ILQG: Data-driven Robust Optimal Control for Uncertain Nonlinear
Dynamical Systems. Lee, Srinivasa, and Mason, 2017

[Simulation]
Robust-ILQG

A%

Policy 7 Augmented model

v

[Real World] Model Learning

Rollout




Comparison

Optimal Control

Model-based RL
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lobal, analytical : Locally learned
Global, analytica Hybrid model Y
models models
Algorithm ILQG GP-ILQG Probabilistic-DDP
Assumes perfect model Needs data
Initializatio | Initialized with random | Initialized with ILQG policy Random policy &
n policy & random trajectories Demonstrated trajectories
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Optimal Control

Model-based RL
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Global, analytical

Locally learned

GP-ILQG
models models
Globally available,
Locally more accurate,
Model Inaccurate Locally accurate, .
. captures uncertainty
captures uncertainty

Policy No uncertainty Uncertainty-aware Uncertainty-aware

Data No data collection Use data to correct analytical Requires data collection
models
Training Fast convergence Moderate Slow convergence
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LLimitations

* Scaling of GPs
Use any learner that reports uncertainty

* Robustness to model error discourages
exploration
Encourage exploration, e.g. posterior sampling



Takeaways

* Models are nice, but not perfect
Bootstrap models with data

* Strive for minimalism
Task-driven model learning
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