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Harness the Mechanics of Manipulation
to Funnel Uncertainty



Quasi-Static Pushing

How much should the robot know?
• Object mass?                                   No.
• Object-surface friction?                 No.
• Object pressure distribution?   Pick conservatively.
• Finger-object friction?                   Pick conservatively.

The Voting Theorem
[Mason’81]

The Limit Surface
[Goyal et al.’91, Howe and Cutkosky’96]



Analytical Capture Regions



Addressing Object Pose Uncertainty

Vision

Reported
pose

Uncertainty
Region

Is included in 
capture region of a G?

Dogar. “Physics-based Manipulation Planning in Cluttered Human Environments”
Doctoral Dissertation, 2013.



Physics-based Manipulation
Exploiting physics to manipulate objects

Dogar, Srinivasa “A Planning Framework for Non-Prehensile Manipulation under Clutter and Uncertainty”, AuRo 2012.
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Autonomous control of complex 
dynamical systems



Global models are often
only partially correct
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Global, �analytical 
models

Model Inaccurate

Policy No uncertainty

Data No data collection

Training Fast convergence

Optimal Control Model-based RL
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Global, �analytical 
models

Locally learned 
models

Model Inaccurate Locally more accurate,
captures uncertainty

Policy No uncertainty Uncertainty-aware

Data No data collection Requires data collection

Training Fast convergence Slow convergence

Optimal Control Model-based RL
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Learn the residual between
simulation and reality

Gaussian Process Regression

Gilwoo Lee
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Policy Search:
Iterative Linear Quadratic Regulator
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Linear dynamics,
Quadratic cost,
Iterative local improvements

Li, Weiwei, and Emanuel Todorov. "Iterative linear quadratic regulator design for nonlinear biological movement systems." ICINCO (1). 2004.



Policy Search:
Iterative Linear Quadratic Regulator
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Linear dynamics,
Quadratic cost,
Iterative local improvements

Li, Weiwei, and Emanuel Todorov. "Iterative linear quadratic regulator design for nonlinear biological movement systems." ICINCO (1). 2004.



Policy Search:
Iterative Linear Quadratic Regulator
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Linear dynamics,
Quadratic cost,
Iterative local improvements

Li, Weiwei, and Emanuel Todorov. "Iterative linear quadratic regulator design for nonlinear biological movement systems." ICINCO (1). 2004.



Policy Search:
Iterative Linear Quadratic Gaussian Control
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x1

x2

u1
xT

Linear stochastic dynamics,
Quadratic cost,
Iterative local improvements

Todorov, Emanuel, and Weiwei Li. "A generalized iterative LQG method for locally-optimal feedback control of constrained nonlinear stochastic systems." 

American Control Conference, 2005. Proceedings of the 2005. IEEE, 2005.



Incorporate model uncertainty into the 
Iterative Linear Quadratic Regulator

Robust Iterative Linear Quadratic Regulator



Policy Search:
Iterative Linear Quadratic Gaussian Control
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Bellman update:
V(xt) = min  l(xt, ut) + Ε[V’(f(xt, ut))]

ut
Q

Q(δx, δu) = Qxδx + Quδu + + 1/2(δxTQxxδx + δuTQuuδu + 2 δxTQxuδu) 

Qx = lx + E[ fxT V’x ] = lx + E[(f + ζ)x T V’x] = lx + f x T V’x

Qu = lu + E[ fuT V’x ] 
Qxx = lxx + E[ fxT V’xxfx ] = lxx + E[(f+ ζ)xT V’xx(f+ ζ)x ]= lxx + fxT V’xxfx + Ε [ζxT V’xx ζx ]
Quu = luu + E[ fuT V’xxfu ] 
Qux = lux + E[ fuT V’xxfx ]

xt+1 =  f(xt, ut) +  ζ (xt, ut),    ζ ~ N( 0, Γ)

Todorov, Emanuel, and Weiwei Li. "A generalized iterative LQG method for locally-optimal feedback control of constrained nonlinear stochastic systems." 

American Control Conference, 2005. Proceedings of the 2005. IEEE, 2005.
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xt+1 =  f(xt, ut) +  ζ (xt, ut) 
=  fglobal(xt, ut) + !(xt, ut) + ξ (xt, ut) + ζ (xt, ut)

Policy Search:
Robust ILQG

ζ ~ N( 0, Γ),  ξ ~ N( 0, Σ)
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[Simulation]

Robust-ILQG

[Real World]

Rollout

Model Learning

Policy ⇡

Data

Augmented model

Figure 1: GP-ILQG overview

Explicitly correcting model bias and incorporating the correction as well as our
uncertainty of the correction in optimal control enables lifelong learning of the
system and robust control under uncertainty.

Our algorithm iterates over simulation-based optimal control, real-world data collection, and model
learning, as illustrated in Figure 1. Starting from a potentially incorrect model given by the simulator,
we obtain a control policy, with which we collect data in the real world. This data feeds into model
learning, during which we correct model bias and estimate our uncertainty of the correction. Both the
correction and its uncertainty are incorporated into computing a robust optimal control policy, which
then gets used to collect more data.

Our approach improves any simulator beyond the scope of its model space to match real-world
observations and produces an optimal control policy robust to model uncertainty and multiplicative
noise. The improved simulator uses previous real-world observations to infer the true model when it
explores previously visited space, but when it encounters a new region, it relies on the simulator’s
original model. Due to this hybrid nature, our algorithm shows faster convergence to the optimal
policy than a pure data-driven approach [13] or a pure simulation-based approach. Moreover, as it
permanently improves the simulator, it shows even faster convergence in new tasks in similar task
domain.

2 Related Work

Most model-based reinforcement learning has both model learning (system identification) and policy
optimization components [7]. The data for a model comes either from real world or simulation, and
is combined to construct a model via nonlinear function approximators such as Locally Weighted
Regression [2], Gaussian Processes [17], or Neural Networks [12]. Once the model is built, a
typical policy gradient method computes the derivatives of the cost function with respect to control
parameters [4, 8].

If an analytic model is given, e.g., via equations of motion or as a simulator2, one can use classical
optimal control techniques such as Differential Dynamic Programming (DDP) [6], which compute a
reference trajectory as well as linear feedback control law. For robustness, Iterative Linear Quadratic
Gaussian Control (ILQG) [22] or H-1 Control [20] can be used to incorporate multiplicative noise.
Variants of [22] have been used to generate guiding policies for data-driven RL methods [8, 28].
Recently, there have been some attempts to combine DDP or ILQG with data-driven models by
replacing analytical models with locally linear models [10, 25] or nonlinear models [13, 15, 26, 14]
learned by Gaussian Processes or Neural Networks.

2We consider black-box simulators as analytical models, as derivatives can be taken by finite differencing.

2

GP-ILQG
GP-ILQG: Data-driven Robust Optimal Control for Uncertain Nonlinear 

Dynamical Systems. Lee, Srinivasa, and Mason, 2017
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Global, �analytical 
models Hybrid model Locally learned 

models

Algorithm ILQG GP-ILQG Probabilistic-DDP

Assumes perfect model Needs data

Initializatio
n

Initialized  with random 
policy

Initialized with ILQG policy
& random trajectories

Random policy & 
Demonstrated trajectories

Optimal Control Model-based RL

Comparison

Pan, Yunpeng, and Evangelos Theodorou. "Probabilistic differential dynamic programming." Advances in Neural Information Processing Systems. 2014.

Todorov, Emanuel, and Weiwei Li. "A generalized iterative LQG method for locally-optimal feedback control of constrained nonlinear stochastic systems." 

American Control Conference, 2005. Proceedings of the 2005. IEEE, 2005.
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Global, �analytical 
models GP-ILQG Locally learned 

models

Model Inaccurate
Globally available, 
Locally accurate, 

captures uncertainty

Locally more accurate,
captures uncertainty

Policy No uncertainty Uncertainty-aware Uncertainty-aware

Data No data collection Use data to correct  analytical 
models Requires data collection

Training Fast convergence Moderate Slow convergence

Optimal Control Model-based RL



Limitations
• Scaling of GPs

Use any learner that reports uncertainty

• Robustness to model error discourages 
exploration
Encourage exploration, e.g. posterior sampling



Takeaways
• Models are nice, but not perfect

Bootstrap models with data

• Strive for minimalism
Task-driven model learning



Integrating Models and Data
for Robust Manipulation
with and around people  

Siddhartha Srinivasa
Boeing Endowed Professor

Personal Robotics Lab
Computer Science and Engineering

University of Washington


